Journal of Natural Science, Biology and Medicine

ORIGINAL ARTICLE
Year
: 2012  |  Volume : 3  |  Issue : 2  |  Page : 133--138

Cloning, sequencing, and in silico characterization of Omp 28 of Salmonella Typhi (strain MTCC 733) to develop r-DNA vaccine for typhoid fever


Anjani Saxena, Shantanu Tamuly, MK Saxena 
 Animal Biotechnology Center, Department of Veterinary Physiology and Biochemistry, G.B.P.U.A and T, Pantnagar, Uttarakhand, India

Correspondence Address:
M K Saxena
Animal Biotechnology Center, Department of Veterinary Physiology and Biochemistry, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand
India

Background: Typhoid is one of the most important diseases of human beings caused by Salmonella Typhi. There are many vaccine reported against Salmonella Typhi, but search for new candidate vaccine antigens is still going on because presently available vaccines have several limitations such as short-term immunity, high cost, and allergic reaction. Several approaches such as subunit vaccines, Vi polysaccharide, mutant vaccines, and r-DNA vaccines have been tested. r- DNA vaccines have shown some promising potential (targeted Omp). Omp 28 had shown very promising results and suggests that it should be used in further studies of animal protection against the disease. Objective: Cloning, Sequencing and In silico analysis of Omp 28 gene to develop r-DNA vaccine of S.Typhi. Materials and Methods: Omp 28 is made up of three identical subunits of 9.6 kDa showing PCR amplicon of 330 bp which has been cloned in the pJET vector. Recombinant clones has been sequenced, and data submitted to NCBI. Secondary structure was deduced by the Chou Fasman and Garnier method. The sequence of Omp 28 was studied for antigenic indexing, epitope mapping, and MHC mapping using various bioinformatics tool. Results and Conclusion: The sequence of Omp 28 has been assigned accession no GQ 907044.1 by NCBI. Secondary structure has shown it has more alpha region. Hydrophobic plot and surface probability plot shows most amino acids are surface exposed which is a requirement to develop a r-DNA vaccine. Antigenic sites are located within surface exposed regions and eight antigenic determinants are present in Omp 28. On Prosite analysis of Protein shown two motifs i.e. anaphylatoxin domain signature motif at position 219-252 and other one was iron sulphur binding region signature motif at position 36-44. On epitope analysis total six major B cell epitopes were observed which can provoke humoral immunity .On T cell epitope mapping several major epitopes has been found in case of MHC class I and MHC class II. It indicates that Omp 28 can provoke cell mediated as well as humoral immunity and can be proven a promising candidates of Salmonella Typhi.


How to cite this article:
Saxena A, Tamuly S, Saxena M K. Cloning, sequencing, and in silico characterization of Omp 28 of Salmonella Typhi (strain MTCC 733) to develop r-DNA vaccine for typhoid fever.J Nat Sc Biol Med 2012;3:133-138


How to cite this URL:
Saxena A, Tamuly S, Saxena M K. Cloning, sequencing, and in silico characterization of Omp 28 of Salmonella Typhi (strain MTCC 733) to develop r-DNA vaccine for typhoid fever. J Nat Sc Biol Med [serial online] 2012 [cited 2020 Nov 26 ];3:133-138
Available from: http://www.jnsbm.org/article.asp?issn=0976-9668;year=2012;volume=3;issue=2;spage=133;epage=138;aulast=Saxena;type=0