Year : 2019  |  Volume : 10  |  Issue : 3  |  Page : 123-125

Screening of intronic mutation IVS9+141A>G in an Indonesian patient with Gaucher disease

1 Department of Biology, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, Indonesia
2 Human Genetic Research Center, Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, Indonesia
3 Human Genetic Research Center, Indonesian Medical Education and Research Institute, Universitas Indonesia; Department of Pediatric, Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Jakarta, Indonesia

Correspondence Address:
Damayanti Rusli Sjarif
Komplek Depnaker Rt.008/002, Jl. Empang Tiga Dalam No. 13, Pejaten Timur, Jakarta Selatan, 12510, Jakarta
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jnsbm.JNSBM_79_19

Rights and Permissions

Objective: Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by the accumulation of the glycolipid glucosylceramide encoded by the GBA gene in certain organs. At present, more than 460 GBA intronic mutations have been reported in several subpopulations worldwide, but many have never been reported in Indonesia. Here, we aimed to screen for intronic mutations of GBA that might be present in patients with GD in Indonesia. Materials and Methods: Blood samples from patients with and without GD were obtained from the National Dr. Cipto Mangunkusumo Referral Hospital, Jakarta, Indonesia. Genomic DNA samples from peripheral leukocytes were extracted, purified, and amplified using the polymerase chain reaction (PCR) with specific primers. Products of PCR were visualized by gel electrophoresis and were further sequenced to analyze the presence of mutations in intron (intervening sequence [IVS]) 9 of GBA. Results: A mutant allele was identified at IVS9+141A>G, discovered at nucleotide 9335 in IVS 9. This mutation had been reported in India before and was categorized as nonpathogenic. Conclusion: Our study may be used as supplemental information for the GD database in Indonesia and will also open new research opportunities for predicting splicing processes in other intronic variants among patients with GD in Indonesia.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded64    
    Comments [Add]    

Recommend this journal