Table of Contents    
ORIGINAL ARTICLE
Year : 2014  |  Volume : 5  |  Issue : 1  |  Page : 95-100  

Clinico-immunological profile and their correlation with severity of atopic dermatitis in Eastern Indian children


1 Department of Pediatrics, Narayan Medical College and Hospital, Jamuhar, Sasaram, Bihar, India
2 Department of Dermatology, Narayan Medical College and Hospital, Jamuhar, Sasaram, Bihar, India
3 Department of Pathology, Narayan Medical College and Hospital, Jamuhar, Sasaram, Bihar, India

Date of Web Publication18-Feb-2014

Correspondence Address:
Mani Kant Kumar
Department of Pediatrics, Narayan Medical College and Hospital, Jamuhar, Sasaram, Rohtas 821 305, Bihar
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0976-9668.127296

Rights and Permissions
   Abstract 

Objective: To study the clinical features, absolute eosinophil count, and total immunoglobulin E (IgE) level and their association with severity of atopic dermatitis in Eastern Indian children (Bihar). Design: Prospective hospital-based study. Settings: Pediatrics out-patient Department (OPD) and Dermatology OPD of a Tertiary Care Teaching Hospital located in Rohtas District of Bihar. The study was carried out over a period of 2 years during January 2010 to December 2011. Participants: One hundred and thirty two children aged 0 month to 15 years were diagnosed with atopic dermatitis. Main Outcome: Demographic profile, common clinical features, absolute eosinophil count, and total IgE level and their correlation with severity of atopic dermatitis in Eastern Indian children. Results: Out of a total 1829 pediatric patients aged 0 month to 15 years with some pediatric dermatoses, 132 (7.21%) had atopic dermatitis. Of 132 patients, 57 (43.2%) were boys and 75 (56.8%) were girls, with a male to female ratio 1:1.3. Of these 29 were infants and 103 were children. Two (62.1%) patients belonged to rural area whereas 50 (37.9%) belonged to urban area. Personal history, family history (up to third degree relatives), and both personal and family history of atopy were present in 43.18%, 33.34%, and 12.1% of the subjects respectively. Majority (89.4%) of patients had onset before 5 years of age. In infantile Atopic dermatitis (AD), mean age ± SD at onset was 5.2 months ± 3.01 months. In infantile group, 8 (27.6%) had mild, 14 (48.3%) moderate, and 7 (24.1%) had severe atopic dermatitis. Infantile AD had statistically significant higher SCORing Atopic Dermatitis (SCORAD) index score in all three grades of severity of the disease. One hundred and three patients had childhood AD, out of which 40 (38.8%) were boys and 63 (61.2%) were girls, with a male to female ratio 1:1.57. In childhood AD, mean age ± SD at onset of the disease was 3.47 years ± 3.02 years. Sixty three (61.1%) belonged to rural area whereas 40 (38.9%) were from urban area. One hundred and thirty (98%) patients presented with itching. Ninety two (69.7%) patients had high absolute eosinophils count (AEC) with mean ± SD of 1004.1 ± 596.2 (range 325-2510). Eighty seven (65.9%) patients had increased total serum immunoglobulin E (TsIgE) with mean ± SD value of 1127.11 IU/ml ± 731.69 IU/ml (range: 125-2680 IU/ml). Conclusion: Epidemiological data on atopic dermatitis in India are mainly hospital-based, true-point prevalence in community is still scanty . Although the prevalence of AD is considered to be increasing, it still remains low in comparison to developed countries. In Indian children, the disease is relatively milder than children of developed countries. This study identified that both AEC and TsIgE increased significantly in about 66% patient and directly correlated with the severity of the AD.

Keywords: Absolute eosinophil count, atopic dermatitis, Eastern Indian children, total serum immunoglobulin E


How to cite this article:
Kumar MK, Singh PK, Patel PK. Clinico-immunological profile and their correlation with severity of atopic dermatitis in Eastern Indian children. J Nat Sc Biol Med 2014;5:95-100

How to cite this URL:
Kumar MK, Singh PK, Patel PK. Clinico-immunological profile and their correlation with severity of atopic dermatitis in Eastern Indian children. J Nat Sc Biol Med [serial online] 2014 [cited 2021 Feb 28];5:95-100. Available from: http://www.jnsbm.org/text.asp?2014/5/1/95/127296


   Introduction Top


Atopic dermatitis (AD) is a chronic or chronically relapsing eczematous skin disease that is also called as atopic eczema and characterized by itching, dry, inflamed, and easily irritated skin accompanied by cutaneous functional dysfunction. There is no laboratory "gold standard" for the diagnosis of AD. The diagnosis of AD is based on a constellation of signs and symptoms. [1] It arises as a result of complex interplay between various genetic, immunologic, and environmental factors. Atopic dermatitis has a strong familial basis. Twin studies have shown that monozygotic twins have about 86% risk to develop AD if the twin partner has the disease, whereas there is only 21% disease risk in dizygotic twins. [2] The genetic predisposition of atopy causes a systemic expansion of Th2 cell activity, leading to increased secretion of Interleukin (IL) IL-5, IL-4, IL-13, and IL-3 which causes eosinophilia, increased immunoglobulin E (IgE), and increased growth and development of mast cell. [3] The prevalence of AD has been increasing over the past 30 years. Changes in environmental pollutants, breast feeding pattern, increased awareness, and urbanization are some of the reasons cited for this change. [4] There are many published research on natural history, epidemiology, etiopathogenesis, clinical patterns, and management of AD in Indian Literature, but no published research on clinico-immunologic profile and their correlation with severity of AD in Indian children. In this study, we have studied the clinical and immunological profile of AD and tried to correlate with severity of atopic dermatitis in Eastern Indian children.


   Materials and Methods Top


This hospital-based prospective study was carried out in the Out-patient Department (OPD), of the Department of Pediatrics and the Department of Dermatology, at Narayan Medical College and Hospital, Jamuhar, Rohtas, Bihar, India, for a period of 2 years from January 2010 to December 2011. The Institute of Ethical Committee approved the study protocol. After taking informed written consent from parents of the every patient, all patients were enrolled on a pre-structured Performa and 2 ml blood in ethylenediamminetetraacetic Acid (EDTA) container and 5 ml blood in plain container were collected for laboratory investigations. This Performa included data on present age, age of onset, area of residence, personal and family history of atopy, seasonal variation, religion of the patient, mile stone development, socio-economic status of the parents, history of relapse, absolute eosinophil counts (AEC), and serum total IgE level.

A thorough clinical examination was carried out including measurement of height, weight, distribution of lesion, severity of skin lesion, and type of skin lesion. In every patient diagnosis of AD was confirmed after consultation with dermatologist. The eczema was categorized after a thorough clinical examination of the lesions. Atopic dermatitis was classified as acute, sub-acute, and chronic, according to stage of disease. Erythema, edema, vesiculation, and oozing were part of "acute AD" whiereas "sub-acute AD" was defined as patches with minimal oozing, crusting and scaling, and dry, rough lichenified plaques with or without scaling denoted "chronic AD". The severity of the disease was assessed by SCORing Atopic Dermatitis (SCORAD) index. [5] SCORAD index is a clinical tool used to assess the extent and severity of eczema. The SCORAD index consist of the interpretation of the extent of the disorder, that is, the intensity, composed of six items (erythema, edema/papules, effect of scratching, oozing/crust formation, lichenification, and dryness), and two subjective symptoms (itch and sleeplessness), the maximum score is 103 points. This is ok here to describe SCORAD.

Hemoglobin, total leukocytes count (TLC), differential leukocyte count (DLC), and absolute eosinophils count (AEC) was performed by automated hematology analyzer (XS 800i)(This model no, so no expansion required) sysmex, Japan. AEC was also rechecked manually after staining with Leishman's stain. An AEC more than 300 was considered as increased eosinophils count. Total serum immunoglobulin E antibody titre (TsIgE) was performed by Chemiluminescence Immunoassay (CLIA) method in IU/ml. An absolute eosinophil count (AEC) more than 300 was considered as high and more than reference normal range of TsIgE for different age group (0-1 year, 0.6-117 IU/ml; 1-5 year, 0.3-313 IU/ml; 5-10 year, 0.6-555 IU/ml; and 10-15 year, 1.4-481 IU/ml) was considered as high TsIgE.

Inclusion criteria

Children aged 0 month to 15 years diagnosed with atopic dermatitis.

Exclusion criteria

Patients of AD with any associated congenital skin disorder, immunocompromised disorder, and drug rashes.

Statistical analysis

Mean age of the patients expressed in mean ± SD. Data were analyzed using Open Epi Statistical Software version 2.3.1. Mean, standard deviation, odds ratio, and relative risk were calculated using appropriate statistical methods. P < 0.05 was considered statistically significant for any given measures.


   Results Top


Out of a total of 1829 pediatric patients aged 0 month to 15 years seen in our Department of Pediatrics and the Department of Dermatology, from January 2010 to December 2011, 132 children had atopic dermatitis. In this study the prevalence of atopic dermatitis was 7.21% of all pediatrics dermatoses in this age group. Of 132 patients, 57 (43.2%) were boys and 75 (56.8%) were girls, with a male to female ratio of 1:1.3. Eighty two (62.1%) patients belonged to rural area whereas 50 (37.9%) to urban area. Among rural area patients, 30 (36.6%) were boys and 52 were girls with a male to female ratio 1:1.7, whereas in urban area, 27 (54%) were boys and 23 (46%) were girls with male to female ratio 1:1.2. Of 132 patients, 98 (74.2%) were Hindu, 30 (22.7%) were Muslims, and 4 (3.1) were of others religion. Socioeconomically, 34 (25.8%) were from high socio-economic group, 61 (46.2%) were from the middle strata, and 37 (28%) from the lower socio-economic strata. Personal history, family history (up to third degree relatives), and both personal and family history of atopy was present in 42.18%, 31.34%, and 11.1% of subjects respectively. One hundred and eight (81.8%) had history of relapse. One hundred and eighteen (89.4%) patients had onset before 5 years of age. The distribution of the patients according to age of onset is shown in [Table 1].
Table 1: Age at onset of disease

Click here to view


Of 132 patients, 29 were infants (up to 1 year of age) of whom 17 (58.6%) were boys and 12 (41.4%) were girls with a male to female ratio 1.4:1. Mean age ( SD) at onset was 5.2 (±3.01) months. Nineteen (65.5%) belonged to rural area whereas 10 (34.5%) were from urban area. In infantile group 8 (27.6%) had mild, 14 (48.3%) moderate, and 7 (24.1%) had severe atopic dermatitis. Infantile AD had statistically significant higher SCORAD Index score in all three grade of severity of the disease as shown in [Table 2].
Table 2: SCORing atopic dermatitis index score (mean±SD) among infantile atopic dermatitis and childhood AD

Click here to view


One hundred and three patients were in childhood group (1-15 year), out of which 40 (38.8%) were boys and 63 (61.2%) were girls, with a male to female ratio of 1:1.57. Mean age ± SD at onset of the disease was 3.47 years ± 3.02 years. Sixty three (61.1%) belonged to rural area whereas 40 (38.9%) were from urban area. Childhood AD had statistically significant lower SCORAD Index score in all three grade of severity of the disease. One hundred and thirty (98%) patients presented with complain of itching or pruritus as shown in [Table 3].
Table 3: Common clinical presentation of atopic dermatitis

Click here to view


Ninety two (69.7%) patients had high AEC with mean ± SD of 1004.1 ± 596.2 (range 325-2510). Among patients with increased AEC, mean (±SD) AEC in mild, moderate, and severe AD were 596.16 ± 135.57, 850.17 ± 406.17, and 1404.86 ± 438.31 respectively. On ANOVA analysis of the AEC in different severity, severe AD had statistically significant high AEC (P < 0.0001). Even within same group, patients with high AEC had statistically significant higher SCORAD Index score [Table 4].
Table 4: SCORAD index score (mean±SD) in patients with normal absolute eosinophil count and high absolute eosinophil count among mild, moderate, and severe atopic dermatitis

Click here to view


Eighty seven (65.9%) patients had increased total serum immunoglobulin E (TsIgE) with mean ± SD value of 1127.11 IU/ml ± 731.69 IU/ml (range: 125-2680 IU/ml). Among patients with increased TsIgE, mean (±SD) TsIgE, in mild, moderate, and severe AD were 389.28 IU/ml ± 476.22 IU/ml, 831.37 IU/ml ± 745.27 IU/ml, and 1269.8 IU/ml ± 745.27 IU/ml respectively. On ANOVA analysis of the TsIgE, in different severity, severe AD had statistically significant high AEC (P < 0.0001). Even within-group patients with high TsIgE had statistically significant higher SCORAD Index score [Table 5].
Table 5: SCORAD index score (mean±SD) in patients with normal total serum immunoglobulin E (TsIgE) and high TsIgE among mild, moderate, and severe atopic dermatitis

Click here to view



   Discussion Top


Atopic dermatitis (AD) is a chronic or chronically relapsing eczematous skin disease that is also called as atopic eczema and characterized by itching, dry, inflamed, and easily irritated skin accompanied by cutaneous functional dysfunction. Eczema literally means to boil out (Ec-out, Zema-boil) and the term eczema and dermatitis are often used synonymously.

Atopic dermatitis has three phases. (1) Infantile phase (up to 2 years of age) primarily involved face, scalp, neck, and extensor surface of extremities with erythematous oozing papulo-vesiculous lesions. (2) In childhood phase (between 2 year and 10 years of age), the lesions are sub-acute, more scattered, and often localized in the flexor folds of the neck, elbows, wrist, and knees. (3) In adolescent and adult phase (more than 10 years of age), the lesions are primarily dry, lichenified, and hyperpigmented plaques were seen in flexor areas.

The prevalence of AD had been increasing over the past four decades in developed country and also in India. [4],[6] Our study was a hospital-based rather than population-based, so the exact incidence of AD in the community could not be estimated, but these patients comprised 7.21% of all pediatric dermatoses in the study age group. A four-decade-old study from Bihar reported an incidence of 0.38% of the total number of out-patient attendees. [7] On contrary to our study, North Indian hospital-based study reported 28.46% [8] and 29.9% [9] of total pediatric dermatology patients. "Hygiene Hypothesis" can explain the relatively lower occurrence of AD in our study when compared with North Indian children because overall hygiene is poor and various infections in childhood is rampant in this part of the country because of poor socio-economic status. However, prevalence in Bihar also had increased over last four decades. [7] The reason for this increase is not known but probably increased environmental pollution, exposure to agricultural chemicals, decline breast feeding, earlier weaning, urbanization, increased awareness, better case detection technique, and improved quality of life are the factors that can explain increasing trend in occurrence of AD.

In previous studies carried out, there are contrast view regarding gender ratio, although most have reported a male predominance, with male to female ratio 2.13:1 for infants and 1.09:1 for children, [8] 2.25:1 for infants and 1.6:1 for children. [9] On the contrary, our study found that girls outnumbered boys, with a female to male ratio of 1.3:1, however, in infantile group, boys outnumbered girls with a male to female ratio 1.4:1. In childhood group, female to male ratio was 1.57:1. Our study result was comparable with study carried out by Rajka et al. who found female predominance with a female to male ratio of 1.5:1. [10]

Todd et al. [11] and Poysh et al. [12] found higher prevalence in urban areas than rural areas. In contrast to these findings, our study found higher prevalence in rural areas, with a rural to urban ratio of 1.64:1. This finding can be explained in view that our hospital caters to predominantly rural population. Our finding regarding religion was proportionate to the percentage population of different religion in Eastern India.

William found that prevalence of AD increases with improvement in socio-economic condition. [4] Similar finding was reported by Spergel et al. who found that the prevalence of AD had increased two to three folds during past three decades in industrialized countries due to improvement of socio-economic condition and improved life style. [13] In contrast to our study, 46.2% patients came from middle class, 28% from lower socio-economic class, and only 25.8% from upper socio-economic class, which was comparable with Indian study carried out by Sarkar and Kanwar, in which they found that majority belonged to middle class families (53.8% for up to 1 year and 57.57% onwards) whereas minority of patients was from low strata 15.55% for up to 1 year and 23.23% above 1 year. [8]

In our study, mean age (±SD) at onset was 5.2 (±3.01) months in infantile AD and 3.47 years ± 3.02 years in childhood AD, these were comparable with other Indian studies which recorded 4.2 months for infantile AD and 4.5 years for childhood AD, [8] 4.5 months for infantile AD and 4 years for childhood AD. [9] In the present study, 28.8% of children developed disease by the age of 1 year and 89.4% by the age of 5 years and only 10.6% developed after 5 years of age. In a study, Rajka found that 60% of subjects were having the onset of the disease in the first year of life and 85% by 5 years of age. [14] In a North Indian study they found 55.2% developed disease by 1 year of age and only 5.6% developed the disease after 6 years of age. [9] In our study, late presentation can be explained that in rural areas milder disease often ignored especially during infancy in low socio-economic strata.

In the present study, 65.8% children had history of atopy, among which 42.18%, 31.34%, and 11.1% of children had personal history, family history (up to third degree relatives), and both personal and family history of atopy. Halbert et al. found that approximately 70% patients had family history of atopy. [15] Family history varied in different studies. In an Indian study, the personal or family history of atopy was observed in 54% and 65% respectively. [16]

In the present study infantile AD had statistically significant higher SCORAD Index score in mild, moderate, and severe AD with mean ± SD score of 17.8 ± 4.29 vs. 12.3 ± 5.1 (P = 0.0065), 38.35 ± 8.28 vs. 33.3 ± 7.5 ( P = 0.032), and 88.42 ± 14.24 vs. 64.9 ± 11.89 ( P = 0.002) respectively. Sarkar and Kanwar in a study from north India also reported that infantile AD was relatively more severe than childhood AD. [9]

In this study most common (98%) clinical presentation was itching. Face was affected in 76.8% patients in infantile AD and 56.8% patients in childhood AD. Our findings were comparable with findings of Dhar and Kanwar. [8]

In our study disease severity was assessed by SCORAD and we found 42.4%, 44.7%, and 12.9% patients had mild, moderate, and severe disease, which was almost comparable with other Indian study by Dhar et al. [16]

We found that 69.7% and 65.9% patients with AD had high absolute eosinophil count (AEC) and total serum IgE (TsIgE) respectively. Increased AEC and TsIgE level directly correlated with severity of the disease. Akadis et al. also found that systemic expansion of Th2 cell activity leading to release of IL-5, IL-4, IL 13, and IL-3 caused eosinophilia. [3] In a study, Leiferman has found that exact role of eosinophils and IgE antibodies in the pathogenesis of AD is not clear, but individual with AD has elevated eosinophils and IgE antibody level. [17] Wollenberg also has demonstrated that majority of cases are associated with a sensitization to environmental allergens and increased total IgE and eosinophilia, but about 30% of all cases lack increased total IgE. [18]


   Conclusion Top


Epidemiological data on atopic dermatitis in India are mainly hospital-based, true-point prevalence in community is still scanty. Although the prevalence of AD is considered to be increasing, it still remains low in comparison to developed countries. In Indian children, the disease is relatively milder than children of developed countries. This study identified that both AEC and TsIgE increased significantly in about 66% patient and directly correlated with the severity of the AD. However, to confirm our findings, larger population study in future is needed. Our study had some limitation as this was a hospital-based study true-point prevalence in community could not be extrapolated.


   What is already known in AD? Top


Majority of patients with AD had increased AEC and total serum IgE antibody level.


   What this Study ADDS? Top


Higher AEC and TsIgE directly associated with severity of AD.


   Acknowledgment Top


We wish to thank our Dean, Prof. Dr. M.L. Verma, Narayan Medical College and Hospital, Jamuhar, Sasaram, Bihar, India for allowing us to publish this study.

 
   References Top

1.Hanifin JM, Rajka G. Diagnostic features of atopic dermatitis. Acta Derm venerol [Stockh] 1980;92:42-7.  Back to cited text no. 1
    
2.Bradley M, Kockum I, Söderhäll C, Van Hage-Hamsten M, Luthman H, Nordenskjöld M, et al. Characterization by phenotype of families with atopic dermatitis. Acta Derm Venereol 2000;80:106-10.  Back to cited text no. 2
    
3.Akdis CA, Akdis M, Simon HU, Blaser K. Regulation of allergic inflammation by skin-homing T cells in allergic eczema. Int Arch Allergy Immunol 1999;118:140-4.  Back to cited text no. 3
    
4.Williams HC. Is the prevalence of atopic dermatitis increasing? Clin Exp Dermatol 1992;17:385-91.  Back to cited text no. 4
    
5.Kunz B, Oranje AP, Labrèze L, Stalder JF, Ring J, Taïeb A. Clinical validation and guidelines for the SCORAD index: Consensus report of the European Task Force on Atopic Dermatitis. Dermatology 1997;195:10-9.  Back to cited text no. 5
    
6.Dhar S. Atopic dermatitis: Indian scenario. Indian J Dermatol Venereol Leprol 1999;65:253-7.  Back to cited text no. 6
[PUBMED]  Medknow Journal  
7.Sinha PK. Clinical profile of infantile eczema in Bihar. Indian J Dermatol venerol Leprol 1972;38:179-84.  Back to cited text no. 7
    
8.Dhar S, Kanwar AJ. Epidemiology and clinical pattern of atopic dermatitis in a North Indian pediatric population. Pediatr Dermatol 1998;15:347-51.  Back to cited text no. 8
    
9.Sarkar R, Kanwar AJ. Clinico-epidemiological profile and factors affecting severity of atopic dermatitis in north Indian children. Indian J Dermatol 2004;49:117-22.  Back to cited text no. 9
  Medknow Journal  
10.Rajka G. Atopic dermatitis. Correlation of environmental factors with frequency. Int J Dermatol 1986;25:301-4.  Back to cited text no. 10
    
11.Todd G, Saxe N, Milne J, Tolosana S, Williams H. Prevalence of atopic dermatitis in Xhosa children living in rural, periurban and urban areas. Curr Allergy Clin Immunol 2004;17:140.  Back to cited text no. 11
    
12.Pöysä L, Korppi M, Pietikäinen M, Remes K, Juntunen-Backman K. Asthma, allergic rhinitis and atopic eczema in Finnish children and adolescents. Allergy 1991;46:161-5.  Back to cited text no. 12
    
13.Spergel JM. From atopic dermatitis to asthma: The atopic march. Ann Allergy Asthma Immunol 2010;105:99-106.  Back to cited text no. 13
    
14.Rajka G. Onset, Phases, and Morphological Characteristics Essential Aspects of Atopic Dermatitis (Monograph). New York: Springer Verlag; 1989, p. 7.  Back to cited text no. 14
    
15.Halbert AR, Weston WL, Morelli JG. Atopic dermatitis: Is it an allergic disease? J Am Acad Dermatol 1995;33:1008-18. Journal name is correct, complete name is Journal of the American Academy of Dermatology Volume 33, Issue 6, Pages 1008-1018, December 1995.  Back to cited text no. 15
    
16.Dhar S, Mandal B, Ghosh A. Epidemiology and clinical pattern of atopic dermatitis in 100 children seen in city hospital. Indian J Dermatol 2002;47:202-04.  Back to cited text no. 16
  Medknow Journal  
17.Leiferman KM. A current perspective on the role of eosinophils in dermatologic diseases. J Am Acad Dermatol 1991;24:1101-12.Page correct, details as follows Journal of the American Academy of Dermatology Volume 24, Issue 6, Pages 1101-1112, June 1991.  Back to cited text no. 17
    
18.Wollenberg A, Kraft S, Oppel T, Bieber T. Atopic dermatitis: Pathogenetic mechanisms. Clin Exp Dermatol 2000;25:530-4.  Back to cited text no. 18
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]


This article has been cited by
1 Oral Aspects Identified in Atopic Dermatitis Patients: A Literature Review
Aline Domingues Tavares Oliveira,Camila Stofella Sodré,Dennis de Carvalho Ferreira,Eliane de Dios Abad,Simone Saintive,Márcia Ribeiro,Fernanda Sampaio Cavalcante,Bruna Piciani,Lucio Souza Gonçalves
The Open Dentistry Journal. 2018; 12(1): 424
[Pubmed] | [DOI]
2 The severity of atopic dermatitis and the relation to the level of total IgE, onset of atopic dermatitis and family history about atopy
J. Vaneckova,J. Bukac
Food and Agricultural Immunology. 2016; : 1
[Pubmed] | [DOI]
3 Role of the tumor necrosis factor family member LIGHT in the pathogenesis of atopic dermatitis
Neveen Salah Seifeldin,Shereen Bendary El Sayed,Marwa Kamal Asaad,Alaa Ahmed Aly
International Journal of Dermatology. 2015; 54(10): e376
[Pubmed] | [DOI]
4 Qualitative vs. quantitative atopic dermatitis criteria - in historical and present perspectives
R.M. Andersen,J.P. Thyssen,H.I. Maibach
Journal of the European Academy of Dermatology and Venereology. 2015; : n/a
[Pubmed] | [DOI]



 

Top
  
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    What is already ...
    What this Study ...
   Acknowledgment
    References
    Article Tables

 Article Access Statistics
    Viewed2471    
    Printed64    
    Emailed1    
    PDF Downloaded350    
    Comments [Add]    
    Cited by others 4    

Recommend this journal