ORIGINAL ARTICLE
Year : 2019  |  Volume : 10  |  Issue : 3  |  Page : 109-112

Mutation analysis of exon 8 of the iduronate-2-sulfatase gene in mucopolysaccharidosis type II patients in Indonesia


1 Human Genetic Research Center, Indonesian Medical Education and Research Institute; Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jakarta, Indonesia
2 Human Genetic Research Center, Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, Indonesia
3 Human Genetic Research Center, Indonesian Medical Education and Research Institute; Department of Pediatric, Faculty of Medicine, Cipto Mangunkusumo National Referral Hospital; Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
4 Human Genetic Research Center, Indonesian Medical Education and Research Institute; Department of Biology, Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
5 Human Genetic Research Center, Indonesian Medical Education and Research Institute; Department of Pediatric, Faculty of Medicine, Cipto Mangunkusumo National Referral Hospital, Universitas Indonesia, Jakarta, Indonesia

Correspondence Address:
Damayanti Rusli Sjarif
Komplek Depnaker RT.008/002, Jl. Empang Tiga Dalam No. 13, Pejaten Timur, Jakarta Selatan 12510, Jakarta
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jnsbm.JNSBM_44_19

Rights and Permissions

Objective: Mucopolysaccharidosis II (MPS II), also known as Hunter syndrome, is a rare, recessive, X-linked lysosomal storage disorder caused by a deficiency of lysosomal enzyme iduronate-2-sulfatase (IDS), encoded by IDS gene. I2S plays an important role in the lysosomal degradation of dermatan sulfate and heparan sulfate, with I2S deficiency leading to the accumulation of these glycosaminoglycans in the tissues. Materials and Methods: Exon-specific analyses of IDS exon 8 from eight Indonesian patients with MPS II from Cipto Mangunkusumo Hospital, Jakarta, Indonesia, were performed using polymerase chain reaction and sequencing-based methods. Results: Two novel mutations and a deletion variant of exon 8 were identified among the patients. A single-nucleotide deletion variant (c.1023delA), causing a frameshift in the corresponding amino acid sequence (p.Glu341AspfsTer19), was observed in all patients. In addition, a novel missense mutation (c.1033T>C) resulting in a tryptophan to arginine substitution (p.Trp345Arg), along with a single-nucleotide deletion (c.1041delA) resulting in a second frameshift in the amino acid sequence (p.Lys347AsnfsTer13), was also observed in one patient. Conclusion: This study provides the first mutation analysis of exon 8 of IDS and successfully identified mutations within the IDS gene that may be associated with MPS II. These findings will be added to the IDS gene profile database and may help in the diagnosis of MPS II in future.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed18    
    Printed0    
    Emailed0    
    PDF Downloaded3    
    Comments [Add]    

Recommend this journal