ORIGINAL ARTICLE
Year : 2018  |  Volume : 9  |  Issue : 2  |  Page : 242-246

Radioprotective potential of Asparagus racemosus root extract and isoprinosine against electron beam radiation-induced immunosupression and oxidative stress in swiss albino mice


1 Central Research Laboratory, K.S Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
2 Department of Pharmaceutical Chemistry, NGSM Institute of Pharma Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
3 Department of Biochemistry, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
4 Department of ENT, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
5 Department of Oncology, Nitte Leela Narayan Shetty Memorial Cancer Institute, Mangalore, Karnataka, India
6 Department of Radiation Oncology, Apollo CBCC, Ahmedabad, Gujarat, India

Correspondence Address:
B Satheesh Kumar Bhandary
6th Floor, University Enclave, Medical Sciences Complex, Nitte (Deemed to be University), Deralakatte, Mangalore - 575 018, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jnsbm.JNSBM_225_17

Rights and Permissions

Background: Radiotherapy is an important and the most common treatment modality for human cancers. Cancer radiotherapy is associated with unadorned side effects that results from normal tissue damage which is a major subject of concern. Radiation induces damage to living cells due generation of aqueous-free radicals. Therefore, there is a crucial need for the protection of normal cells surrounding the tumor from radiation injury; and hence, the identification of radiation-protecting agents is a chief goal for basic radiation biologists and oncologists. Aim: The aim of this present study was to assess the radioprotective potential of Asparagus racemosus root ethanolic extract (ARE), and isoprinosine (IPR) against electron beam radiation (EBR)-induced immunosuppression and oxidative stress in Swiss Albino mice. Materials and Methods: Swiss albino mice were used for the assessment of the radioprotective potential of ARE and IPR against EBR-induced immunosuppression and oxidative stress. Cytokine estimations, namely, interleukin-2, interferon-gamma, and tumor necrosis factor-alpha were performed in the liver homogenate using ELISA kits, and bone marrow cellularity was determined in the experimental animals. Results: The results of the present study demonstrated the radioprotective and immunostimulatory efficacy of ARE and IPR against EBR-induced cytokine and bone marrow cellularity alterations. Conclusion: The findings of our study demonstrate the potential of ARE and IPR in mitigating radiation-induced mortality by offering protection to mice against lethal dose of whole body EBR. The present study also demonstrates that ARE and IPR exert its radioprotection against EBR induced immunosuppression by regulating cytokines.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed358    
    Printed12    
    Emailed0    
    PDF Downloaded73    
    Comments [Add]    

Recommend this journal