Table of Contents    
ORIGINAL ARTICLE
Year : 2015  |  Volume : 6  |  Issue : 2  |  Page : 347-350  

Lipid profile but not highly sensitive C-reactive protein helps distinguish prehypertensives from normal subjects


1 Department of Physiology, JSS Medical College, SS Nagar, Mysore, Karnataka, India
2 Department of Physiology, Vijayanagar Institute of Medical Sciences, Contonment, Bellary, Karnataka, India

Date of Web Publication6-Jul-2015

Correspondence Address:
Dr. T Bharath
Department of Physiology, JSS Medical College, SS Nagar, Mysore - 570 015, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0976-9668.160001

Rights and Permissions
   Abstract 

Background: Early identification of the prehypertensive state can greatly improve the disease risk management. Although increased levels of highly sensitive C-reactive protein (hsCRP) and dyslipidemia is reported among patients with hypertension, the correlation of these parameters among prehypertensives in not known. Hence, the present study was designed to compare the levels of serum hsCRP and lipid profile among prehypertensives and normal subjects and correlate it with blood pressure (BP) levels. Materials and Methods: Anthropometric measurements and BP were recorded in 40 prehypertensive and 40 normal subjects. Subjects were assigned to a group based on their BP as per Joint National Committee 7 criteria. Serum hsCRP and lipid profile were measured and correlated with BP levels. Results: Serum hsCRP showed no significant difference between the two groups. There was no significant correlation of BP with hsCRP in both the groups. Total cholesterol (TC) and low-density lipoprotein (LDL) were significantly increased in prehypertensives as compared to normal subjects. There was no significant association between BP and lipid parameters in prehypertensives. Conclusions: Significant increase of TC and LDL but not hsCRP was evident among prehypertensives as compared to normal subjects.

Keywords: Highly sensitive C-reactive protein, lipid profile, prehypertension


How to cite this article:
Bharath T, Manjula P. Lipid profile but not highly sensitive C-reactive protein helps distinguish prehypertensives from normal subjects. J Nat Sc Biol Med 2015;6:347-50

How to cite this URL:
Bharath T, Manjula P. Lipid profile but not highly sensitive C-reactive protein helps distinguish prehypertensives from normal subjects. J Nat Sc Biol Med [serial online] 2015 [cited 2020 Sep 20];6:347-50. Available from: http://www.jnsbm.org/text.asp?2015/6/2/347/160001


   Introduction Top


Cardiovascular diseases are the major cause of mortality and morbidity globally, [1] with hypertension often being a common clinical finding [2] that the increasing prevalence of hypertension in developing countries is of significant concern. [3],[4] Hypertension is an independent predictor of cardiovascular disease, cerebrovascular accidents, and death. [5] Seventh report of Joint National Committee (JNC 7) on prevention, detection, evaluation, and treatment of high BP defines hypertension as BP >140/90 mmHg. [6] JNC 7 includes prehypertension as a new category defining people who have BP above optimal levels, but not clinical hypertension. According to JNC 7, prehypertension is defined as systolic blood pressure (SBP) ranging between 120 and 139 mmHg and/or diastolic blood pressure (DBP) ranging between 80 and 89 mmHg. [6] Classifying this range, which was earlier considered as normal BP, as prehypertension has placed many people under this risk category. Incidently, prehypertensives are at higher risk of developing hypertension [7] and in addition, prehypertension itself is a major risk factor for cardiovascular events. [8]

Highly sensitive C-reactive protein is an inflammatory marker; which can induce inflammatory changes in endothelial and smooth muscle cells and is associated with development and progression of atherosclerosis and hypertension. [9],[10],[11] C-reactive protein is an acute-phase protein found in traces in the blood of healthy subjects, with a concentration of 1 mg/dl. [12] Rate of macrovascular complications is increased by dyslipidemia. [13] Increased levels of serum hsCRP and dyslipidemia are reported in patients with hypertension. [4],[14],[15] Interestingly, cardiovascular risk groups are classified based on serum levels of hsCRP (low risk: <1.0 mg/L, average risk: 1.0-3.0 mg/L, high risk: above 3.0 mg/L). Nevertheless increased levels of hsCRP and lipid levels signify the increased cardiovascular risk in the patients suffering from prehypertension. Prehypertensives are more likely to progress to hypertension as compared to subjects with normal BP. [7] Hence, early detection of these derangements and early interventions may arrest the progression of prehypertension to hypertension and prevent complications in the individuals suffering from prehypertension. The present study was designed to assess the levels of serum hsCRP and lipid profile in prehypertensives and to compare it with normal subjects and correlate it with BP levels.


   Materials and Methods Top


This comparative study consisted of 80 subjects. 40 prehypertensives and 40 age and body mass index (BMI) matched normal subjects. The subjects who satisfied the inclusion criteria, that is, males of the age group 18-40 years, who were non-smokers, had waist circumference <94 cm, BMI between 18.5 kg/m 2 and 30 kg/m 2 , prehypertensives and normal subjects/normotensives as per JNC 7 criteria were included. Subjects with impaired glucose tolerance, diabetes mellitus, history of any drug intake, history of any acute illness, and previous vascular events such as myocardial infarction, vasculitis were excluded from the study.

Study protocol was explained to the subjects, written and informed consent was obtained. Study was approved by the institutional ethics committee. History was taken from all subjects, following recording of BP, subjects were screened for general physical health to rule out any clinical disorder likely to interfere with the study objectives. Based on BP recordings and as per JNC 7 criteria, subjects were assigned to two groups viz Group 1-Prehypertensives, Group 2-Healthy normal individuals; each group consisted of 40 subjects.

Anthropometric measurements (height, weight, waist circumference) were recorded for all subjects. BMI was calculated using Quetelet's index, calculated as weight (kg)/height 2 (m 2 ). Blood pressure was measured using a sphygmomanometer from the right arm of the seated participant after 10 min rest and was recorded to the nearest 2 mmHg using 1 st and 5 th Korotkoff sounds. Three BP measurements were recorded, and the mean of the last two measurements was used for the analysis. 5 ml of the blood sample was collected after 12 hours overnight fast, and serum was isolated and stored at −20°C in Ependorf tubes till the analysis. Fasting serum glucose was determined by glucose oxidase method, using a commercial kit (SPAN diagnostics, India). Lipid profile was estimated using standard enzymatic method, using a commercial kit (AGAPPE diagnostics, India). Blood samples collected in the fasting state were analyzed for total cholesterol (TC), triglycerides (TG) and high-density lipoprotein (HDL) using specific enzymatic methods. Low-density lipoprotein (LDL) was derived by Fredrickson-Friedwald formula (LDL = [TC-HDL]-TG/5). [16] Serum hsCRP levels were measured by turbidimetry method, using a commercial kit (ERBA diagnostics, Germany). All the samples were assayed for hsCRP, lipid parameters and fasting blood glucose using NexGen (SPAN) semiautomated biochemistry analyzer.

Statistical analysis

Descriptive statistical analysis has been carried out in the present study. Results on continuous measurements are presented as mean ± standard deviation (min-max) and results on categorical measurements are presented in number (%). Significance is assessed at 5% level of significance. Student's t-test (two-tailed, independent) was used to find the significance of study parameters on continuous scale between two groups on metric parameters, Chi-square/fisher exact test was used to find the significance of study parameters on categorical scale between two or more groups. Pearson correlation was used to find a correlation between BP and study variables. The statistical software namely SPSS 15.0, by SPSS Inc. was used for the analysis of the data and Microsoft Word and Excel have been used to generate graphs, tables.


   Results Top


The two groups were matched and were similar in terms of the basic characteristics [Table 1]. Comparison of BP values between two groups showed a significant difference (P < 0.001) [Table 2]. Fasting blood sugar levels was similar in both the groups. hsCRP levels were not significantly (P = 0.348) different between two groups, even though the levels were marginally increased in prehypertensives [Table 3]. TC (P < 0.001) and LDL (P < 0.001) values were significantly increased in prehypertensives as compared to normal subjects; there was no significant difference between the groups with respect to parameters like TG (P = 0.886), HDL (P = 0.553) and very low density lipoprotein (P = 0.886) [Table 4].
Table 1: Comparison of baseline variables between prehypertensives and normal subjects


Click here to view
Table 2: Comparison of BP values between prehypertensives and normal subjects


Click here to view
Table 3: Comparison of hsCRP values between prehypertensives and normal subjects


Click here to view
Table 4: Comparison of lipid parameters between prehypertensives and normal subjects


Click here to view


The findings did not show significant correlation between SBP and serum hsCRP (r-0.037, P = 0.819) in prehypertensives and (r - 0.045, P = 0.781) in normal subjects and also there was no significant correlation between DBP and serum hsCRP in prehypertensives (r - 0.139, P = 0.391) and normal subjects (r - 0.011, P = 0.085) [Table 5]. Correlation between SBP and lipid parameters in preypertensives was non-significant. There was moderately significant negative association between SBP and HDL in normal subjects (r - 0.377, P = 0.016). There was no significant correlation between DBP and lipid parameters in prehypertensives. In normal subjects, there was strongly significant negative association between DBP and HDL (r - 0.429, P = 0.006) [Table 6].
Table 5: Correlation between hsCRP levels and BP


Click here to view
Table 6: Correlation of BP with lipid parameters


Click here to view



   Discussion Top


We aimed to compare the levels of serum hsCRP and serum lipid profile among prehypertensives and normal subjects and correlated these parameters with BP levels. Although a marginal increase of hsCRP levels was observed in prehypertensives, there was no significant difference observed between prehypertensives and normal subjects, which is consistent with previous reports. [15] Few studies have reported significant increase in hsCRP levels in prehypertensives as compared to normal subjects. [14],[17] However, in our study, there was no significant difference in hsCRP levels between the two groups. The probable reason for such result in the present study could be because of the mean age group of the study subjects, which was 26.15 ± 5.57 years for prehypertensives and 27.40 ± 5.89 years for normal subjects. This age group is younger as compared to the age group of the subjects in the studies which have reported significant increase in hsCRP levels in prehypertensives as compared to normal subjects. Thus suggesting that inflammation and raise in hsCRP levels could be an age-related [18],[19] phenomenon and is not independently associated with prehypertensive status. It is also possible that raised hsCRP and therefore inflammation is just a sequelae of prehypertension and not the cause of prehypertension.

Prehypertension was associated with significantly higher TC levels and LDL levels when compared to normal subjects. Suggesting that prehypertensives are at increased risk of cardiovascular events as compared to normal subjects, which is consistent with previous epidemiological studies. [20],[21] This significant increase in lipid parameters in prehypertensives as compared to normal subjects and insignificant difference of hsCRP among prehypertensives and normal subjects suggests that lipid parameters could be elevated in prehypertensives much earlier, even before the inflammation sets in.

Association of prehypertension with risk factors such as hypercholesterolemia, diabetes mellitus and overweight/obesity are previously reported. [7],[20],[22] Our results further support the point that elevated levels of TC and LDL is evident in prehypertensives. This clustering of cardiovascular disease risk factors among persons with prehypertension suggests that prehypertensives should be screened for other cardiovascular disease risk factors, regardless of age. Our study further necessitates the need for intervention either in the form of lifestyle modifications or pharmacological interventions [23],[24] to arrest the progression of prehypertension to hypertension and to prevent complications in prehypertensives.

Limitations of the study

The present study was a cross-sectional study, so causal relationship among BP, hsCRP, and lipid profile could not be found out.

 
   References Top

1.
Anand SS, Yusuf S. Stemming the global tsunami of cardiovascular disease. Lancet 2011;377:529-32.  Back to cited text no. 1
    
2.
Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005;365:217-23.  Back to cited text no. 2
    
3.
Rodgers A, Lawes C, MacMahon S. Reducing the global burden of blood pressure-related cardiovascular disease. J Hypertens Suppl 2000;18:S3-6.  Back to cited text no. 3
    
4.
Gupta R. Trends in hypertension epidemiology in India. J Hum Hypertens 2004;18:73-8.  Back to cited text no. 4
    
5.
Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997;349:1436-42.  Back to cited text no. 5
    
6.
Miller ER 3 rd , Jehn ML. New high blood pressure guidelines create new at-risk classification: Changes in blood pressure classification by JNC 7. J Cardiovasc Nurs 2004;19:367-71.  Back to cited text no. 6
    
7.
Greenlund KJ, Croft JB, Mensah GA. Prevalence of heart disease and stroke risk factors in persons with prehypertension in the United States, 1999-2000. Arch Intern Med 2004;164:2113-8.  Back to cited text no. 7
    
8.
Liszka HA, Mainous AG 3 rd , King DE, Everett CJ, Egan BM. Prehypertension and cardiovascular morbidity. Ann Fam Med 2005;3:294-9.  Back to cited text no. 8
    
9.
Giles TD. Assessment of global risk: A foundation for a new, better definition of hypertension. J Clin Hypertens (Greenwich) 2006;8:5-14.  Back to cited text no. 9
    
10.
Van Der Meer IM, De Maat MP, Hak AE, Kiliaan AJ, Del Sol AI, Van Der Kuip DA, et al. C-reactive protein predicts progression of atherosclerosis measured at various sites in the arterial tree: The rotterdam study. Stroke 2002;33:2750-5.  Back to cited text no. 10
    
11.
Di Napoli M, Schwaninger M, Cappelli R, Ceccarelli E, Di Gianfilippo G, Donati C, et al. Evaluation of C-reactive protein measurement for assessing the risk and prognosis in ischemic stroke: A statement for health care professionals from the CRP pooling project members. Stroke 2005;36:1316-29.  Back to cited text no. 11
    
12.
Barrett KE, Barman SM, Boitano S, Brooks HL, editors. Blood as circulatory fluid and the dynamics of blood and lymph flow. In: Ganong′s Review of Medical Physiology. New Delhi: Tata McGraw-Hill Education; 2010. p. 532.  Back to cited text no. 12
    
13.
Lily J. Diabetic dyslipidemia. Med Update 2000;10:547.  Back to cited text no. 13
    
14.
Sathiyapriya V, Selvaraj N, Nandeesha H, Bobby Z, Aparna A, Pavithran P. Association between protein bound sialic acid and high sensitivity C-reactive protein in prehypertension: A possible indication of underlying cardiovascular risk. Clin Exp Hypertens 2008;30:367-74.  Back to cited text no. 14
    
15.
Nah EH, Kim HC. Comparison of cardiovascular risk factors between normotension and prehypertension. Korean J Lab Med 2007;27:377-81.  Back to cited text no. 15
    
16.
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18:499-502.  Back to cited text no. 16
    
17.
Gupta AK, Johnson WD. Prediabetes and prehypertension in disease free obese adults correlate with an exacerbated systemic proinflammatory milieu. J Inflamm (Lond) 2010;7:36.  Back to cited text no. 17
    
18.
Erren M, Reinecke H, Junker R, Fobker M, Schulte H, Schurek JO, et al. Systemic inflammatory parameters in patients with atherosclerosis of the coronary and peripheral arteries. Arterioscler Thromb Vasc Biol 1999;19:2355-63.  Back to cited text no. 18
    
19.
Cao JJ, Thach C, Manolio TA, Psaty BM, Kuller LH, Chaves PH, et al. C-reactive protein, carotid intima-media thickness, and incidence of ischemic stroke in the elderly: The Cardiovascular Health Study. Circulation 2003;108:166-70.  Back to cited text no. 19
    
20.
Grotto I, Grossman E, Huerta M, Sharabi Y. Prevalence of prehypertension and associated cardiovascular risk profiles among young Israeli adults. Hypertension 2006;48:254-9.  Back to cited text no. 20
    
21.
Pletcher MJ, Bibbins-Domingo K, Lewis CE, Wei GS, Sidney S, Carr JJ, et al. Prehypertension during young adulthood and coronary calcium later in life. Ann Intern Med 2008;149:91-9.  Back to cited text no. 21
    
22.
Choi KM, Park HS, Han JH, Lee JS, Lee J, Ryu OH, et al. Prevalence of prehypertension and hypertension in a Korean population: Korean National Health and Nutrition Survey 2001. J Hypertens 2006;24:1515-21.  Back to cited text no. 22
    
23.
Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med 2006;354:1685-97.  Back to cited text no. 23
    
24.
Russell LB, Valiyeva E, Carson JL. Effects of prehypertension on admissions and deaths: A simulation. Arch Intern Med 2004;164:2119-24.  Back to cited text no. 24
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 6]



 

Top
  
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
    References
    Article Tables

 Article Access Statistics
    Viewed1946    
    Printed36    
    Emailed0    
    PDF Downloaded176    
    Comments [Add]    

Recommend this journal