Table of Contents    
REVIEW ARTICLE
Year : 2015  |  Volume : 6  |  Issue : 2  |  Page : 321-323  

Vestibular stimulation: A simple but effective intervention in diabetes care


Department of Physiology, Little Flower Medical Research Centre, Angamaly, Kerala; Department of Physiology, Saveetha Medical College, Thandalam, Chennai, India

Date of Web Publication6-Jul-2015

Correspondence Address:
Dr. J K Mukkadan
Little Flower Medical Research Centre, Angamaly, Kerala
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0976-9668.159991

Rights and Permissions
   Abstract 

Despite the complexities of the relationship between vestibular stimulation and endocrine disorders being well known, research efforts to understand these complexities are lacking. Interestingly vestibular stimulation may potentially prevent/delay development/progression of diabetes. Here we review the science behind this concept and highlight the need for necessary translational research in this area. Current evidence supports the use of vestibular stimulation not only as a potential intervention to prevent or delay the development of diabetes mellitus in at-risk population, but also to use it as supplementary therapy for diabetic patients management. We urge clinicians to recommend vestibular stimulation by simple means like swing as a goal in maintaining a healthy lifestyle.

Keywords: Diabetes mellitus, swing, vestibular stimulation


How to cite this article:
Sailesh KS, Archana R, Mukkadan J K. Vestibular stimulation: A simple but effective intervention in diabetes care. J Nat Sc Biol Med 2015;6:321-3

How to cite this URL:
Sailesh KS, Archana R, Mukkadan J K. Vestibular stimulation: A simple but effective intervention in diabetes care. J Nat Sc Biol Med [serial online] 2015 [cited 2018 Dec 11];6:321-3. Available from: http://www.jnsbm.org/text.asp?2015/6/2/321/159991


   Introduction Top


The incidence of diabetes is increasing in India with >62 million Indians currently diagnosed with diabetes mellitus. Poor adherence to diabetes medications and treatment and lack of awareness in identifying disease complications and its management are the prime reason for the increasing morbidity due to diabetes. It was only in the middle of 19 th century that the vestibular system was recognized as a separate entity. Fibers from all five sense organs travel to the brain stem and terminate in the vestibular nuclei. [1] The vestibular apparatus is a membranous structure consisting of three semicircular canals connected at their base to the utricle, saccule and endo-lymphatic duct. [2] Autonomic nervous system (ANS) is one of the important regulators of the endocrine system. Stimulation of the parasympathetic system stimulates insulin secretion, whereas sympathetic stimulation inhibits insulin secretion. [3] Several studies have demonstrated the synaptic connections between vestibular otolith organs and ANS and its contribution to the control of blood pressure during movement and changes in posture. [4] Synaptic connections in the vestibule-sympathetic reflex are functional at birth and require the involvement of the ventrolateral medulla in adult mammals. [5] Further caloric stimulation of the vestibular apparatus can inhibit noradrenergic neuronal activity in the locus coeruleus (LC), thus supporting the concept of the ability to modulate the vestibular and ANS synaptic connections. One such event is the central regulation of decrease in insulin secretion following stimulation of the sympathetic system. [6] Interestingly cholinergic neurons are associated with noradrenergic neuronal inhibition during the vestibulo-autonomic reflex, independent of the histaminergic neuron system. [7],[8]

Of interest caudal medial vestibular nucleus and inferior vestibular nucleus (IVN) is connected bilaterally to nucleus tractussolitarius (NTS) and dorsal motor nucleus of the vagus nerve (DMX). [9] The NTS and dorsal motor nucleus of the vagus nerve (DMV) constitute sensory and motor nuclei of the dorsal vagal complex, respectively. [10] Single shock vestibular stimulation evokes response from the ipsilateral vagus nerve. Stimulation of the vagus nerve can cause a considerable increase in insulin secretion and a decrease in C-peptide secretion with no significant change in glucagon secretion. [10]

Here we review the possible mechanisms by which vestibular stimulation may affect diabetes, and suggest necessary translational research in this area, for the benefit of diabetic patients and to the society in general.


   Materials and Methods Top


A detailed review of published literature from http://www.google.com, http://www.pubmed.com, British medical http://www.journal.com, Medline, ERIC, http://www.frontiersin.org and other online journals was performed and analyzed.

Vestibular stimulation prevent/delay development of diabetes by modulating autonomic activity

The vestibular system contributes to autonomic regulation that have clinical implications. [11] Patients with peripheral and central vestibular abnormalities manifest both symptoms and signs of autonomic dysfunction presumably via compromised vestibulo-autonomic connections. Hence, vestibular-autonomic connections may form the basis for an association between vestibular dysfunction and panic attacks. [12] Nevertheless autonomic dysfunction are suggested to be an underlying mechanism in the development of vertigo. [13] Interestingly constriction of the stomach is observed following stimulation of peripheral labyrinth. The solitary tractus nucleus (SN) neurons, where the vagal nerve (VN) cell bodies exist, fired spikes with short latencies, following electrical stimulation of peripheral labrynth. Electrophysiological and histological studies indicates existence of (i) vestibular organs-VN-SN-stomach, (ii) Posterior semicircular canal solitary tractus nuclear neurons ()stomach, associated with the vestibulo-autonomic reflex. [14] The neurons of the vestibular system that involves in cardiovascular and respiratory control integrates a variety of sensory signals and receive direct inputs from visual, muscle, skin and visceral receptors. [15],[16]

Vestibular stimulation prevent/delay development of diabetes by increasing insulin secretion through vagal stimulation

Neuro-anatomical studies in the rabbit and in the cat have identified descending vestibulo-autonomic pathways from the caudal portion of the medial vestibular nucleus and the IVN to the dorsal motor nucleus of the vagus nerve, the nucleus of the solitary tract, and some brain stem medullary sympathetic regions. [17] Single shock vestibular stimulation evokes response from the ipsilateral vagus nerve. Branches of right vagus nerve innervates the pancreatic islets, and stimulation of this parasympathetic pathways causes increased insulin secretion via M 4 receptors (atropine blocks the response and acetylcholine stimulates insulin secretion). The effect of acetylcholine like that of glucose activates phospholipase C, with the released IP 3 releasing the ca +2 from the endoplasmic reticulum, which facilitates the insulin release process. [18]

Vestibular stimulation prevent/delay development of diabetes by increasing insulin secretion through sympathetic inhibition

Vestibular sensory inputs to the vestibulo-sympathetic pathway terminates on cells in the vestibular nuclear complex, which project to brainstem sites involved in the regulation of cardiovascular activity, including the rostral and caudal ventrolateral medullary regions. [19] Caloric vestibular stimulation inhibits locus coeruleus (LC) nor adrenergic neurons. Noisy vestibular stimulation increases release of gamma-aminobutyric acid (GABA) from substansia nigra and GABA inhibits LC nor-adrenergic neurons. [20] Stimulation of the sympathetic nerves to the pancreas inhibits insulin secretion. This inhibition is produced by released norepinephrine acting on alpha-adrenergic receptors. However, if alpha adrenergic receptors are blocked, stimulation of sympathetic nerves causes increased insulin secretion, which is mediated by Beta-2 adrenergic receptors. Hence, catecholamine's have a dual effect on insulin secretion. Nevertheless the net effect of epinephrine and norepinephrine is usually inhibition of insulin secretion. [18]

Vestibular stimulation prevent/delay development of diabetes by regulating food intake

Obesity of nongenetic origin is a consequence to the dis-regulation of food intake, energy balance and overall nutrition. Development of insulin resistance increases is directly correlated with an increase in body weight. Hence, hyperinsulilinemia and dyslipidemia and accelerated development of atherosclerosis are associated with obesity. This combination of findings is commonly called the metabolic syndrome or syndrome X. Some of the patients with the syndrome are prediabetic, whereas others have frank type 2 diabetes. Single shock vestibular stimulation evokes response from the ipsilateral vagus nerve and long term VN stimulation decreased food intake and body weight. [21],[22]

Vestibular stimulation prevent/delay development of diabetes by inhibiting hypothalamo-pituitary-adrenal axis

The onset of diabetes was linked with prolonged sorrow by English physician in 17 th century. [23] Stress activates hypothalamo-pituitary-adrenal (HPA) axis, leading to various endocrine disorders such as high cortisol and low sex steroid levels, which antagonize the actions of insulin. [24] Controlled vestibular stimulation inhibits HPA axis, [25] which further supports the role of vestibular stimulation in the regulation of diabetes. Although these are only association, it would be necessary to explore such associations for further therapeutic development.

Vestibular stimulation prevent/delay development of diabetes by promoting sleep

Chronic lack of sleep may contribute to the risk of type 2 diabetes mellitus. Adequate sleep and good sleep hygiene should be included among the goals of a healthy lifestyle, especially for patients with diabetes. [26] Vestibular system has extensive interactions with hypothalamus, dorsal raphe nucleus, NTS, locus coeruleus and hippocampal formation all of which promotes sleep. [20] These could also be essential in reducing the general stress levels.

In summary, the current evidence suggests the role for vestibular stimulation as a potential intervention to prevent or delay the development of diabetes mellitus in at-risk population and may also used as supplementary therapy in management of diabetic patients. The benefits from vestibular stimulation are achieved through many well-established physiological pathways nevertheless well-designed translational studies are necessary to rigorously establish these findings into evidence-based clinical practice. Nevertheless, we urge clinicians to recommend vestibular stimulation as a simple means to maintain a healthy lifestyle.

 
   References Top

1.
Goldberg JM, Wilson VJ, Cullen KE, Angelaki DE, Broussard DM, Buttner-Ennever J, Fukushima K, Minor LB, et al. The Vestibular System: A Sixth Sense. New York: Oxford University Press; 2012. p. 1-2.  Back to cited text no. 1
    
2.
Sircar S. Principles of Medical Physiology. 2 nd ed. New Delhi: Thieme Publishers; 2014.  Back to cited text no. 2
    
3.
Kiba T. Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: Recent developments. Pancreas 2004;29:e51-8.  Back to cited text no. 3
    
4.
Yates BJ, Bolton PS, Macefield VG. Vestibulo-sympathetic responses. Compr Physiol 2014;4:851-87.  Back to cited text no. 4
    
5.
Kasumacic N, Glover JC, Perreault MC. Vestibular-mediated synaptic inputs and pathways to sympathetic preganglionic neurons in the neonatal mouse. J Physiol 2012;590:5809-26.  Back to cited text no. 5
    
6.
Lorrain J, Angel I, Duval N, Eon MT, Oblin A, Langer SZ. Sympathetic stimulation in dogs. Am J Physiol Endocrinol Metab 1992;263:E72-8.  Back to cited text no. 6
    
7.
Nishiike S, Takeda N, Uno A, Kubo T, Yamatodani A, Nakamura S. Cholinergic influence on vestibular stimulation-induced locus coeruleus inhibition in rats. Acta Otolaryngol 2000;120:404-9.  Back to cited text no. 7
    
8.
Nishiike S, Takeda N, Uno A, Kubo T, Yamatodani A, Nakamura S. Histaminergic influence on vestibular stimulation-induced locus coeruleus inhibition in rats. Acta Otolaryngol Suppl 1998;539:15-8.  Back to cited text no. 8
    
9.
Balaban CD, Beryozkin G. Vestibular nucleus projections to nucleus tractus solitarius and the dorsal motor nucleus of the vagus nerve: Potential substrates for vestibulo-autonomic interactions. Exp Brain Res 1994;98:200-12.  Back to cited text no. 9
    
10.
Sailesh KS, Mukkadan JK. Vestibular modulation of endocrine secretions - A review. Int J Res Health Sci 2014;2:68-78.  Back to cited text no. 10
    
11.
Yates BJ, Bronstein AM. The effects of vestibular system lesions on autonomic regulation: Observations, mechanisms, and clinical implications. J Vestib Res 2005;15:119-29.  Back to cited text no. 11
    
12.
Furman JM, Jacob RG, Redfern MS. Clinical evidence that the vestibular system participates in autonomic control. J Vestib Res 1998;8:27-34.  Back to cited text no. 12
    
13.
Takeda N. Autonomic dysfunction and vertigo. Japan Med Assoc J 2006;49:153-7.  Back to cited text no. 13
    
14.
Ito J, Honjo I. Central fiber connections of the vestibulo-autonomic reflex arc in cats. Acta Otolaryngol 1990;110:379-85.  Back to cited text no. 14
    
15.
Jian BJ, Cotter LA, Emanuel BA, Cass SP, Yates BJ. Effects of bilateral vestibular lesions on orthostatic tolerance in awake cats. J Appl Physiol . 1999;86:1552-60.  Back to cited text no. 15
    
16.
Jian BJ, Shintani T, Emanuel BA, Yates BJ. Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons. Exp Brain Res 2002;144:247-57.  Back to cited text no. 16
    
17.
Porter JD, Balaban CD. Connections between the vestibular nuclei and brain stem regions that mediate autonomic function in the rat. J Vestib Res 1997;7:63-76.  Back to cited text no. 17
    
18.
Barrett KE, Barman SM, Boitano S, Brooks HL. Ganong′s Review of Medical Physiology. 24 th ed. New Delhi: Tata McGraw Hill Private Limited; 2012. p. 442-3.  Back to cited text no. 18
    
19.
Holstein GR, Friedrich VL Jr, Martinelli GP. Projection neurons of the vestibulo-sympathetic reflex pathway. J Comp Neurol 2014;522:2053-74.  Back to cited text no. 19
    
20.
Sailesh KS, Mukkadan JK. Controlled vestibular stimulation: A novel treatment for insomnia. Int J Health Sci Res 2013;3:127-34.  Back to cited text no. 20
    
21.
Bugajski AJ, Gil K, Ziomber A, Zurowski D, Zaraska W, Thor PJ. Effect of long-term vagal stimulation on food intake and body weight during diet induced obesity in rats. J Physiol Pharmacol 2007;58 Suppl 1:5-12.  Back to cited text no. 21
    
22.
Laskiewicz J, Królczyk G, Zurowski G, Sobocki J, Matyja A, Thor PJ. Effects of vagal neuromodulation and vagotomy on control of food intake and body weight in rats. J Physiol Pharmacol 2003;54:603-10.  Back to cited text no. 22
    
23.
Willis T. Pharmaceuticerationalis or an exercitation of the operations of medicines in human bodies. In: The Works of Thomas Willis. London: Dring, Harper, Leigh; 1679.  Back to cited text no. 23
    
24.
Lloyd C, Smith J, Weinger K. Stress and diabetes: A review of the links. Diabetes Spectr 2005;18:121-7.  Back to cited text no. 24
    
25.
Sailesh KS, Mukkadan JK. Can controlled vestibular stimulation reduce stress - A review. Health Sci 2013;2:js001.  Back to cited text no. 25
    
26.
Touma C, Pannain S. Does lack of sleep cause diabetes? Cleve Clin J Med 2011;78:549-58.  Back to cited text no. 26
    




 

Top
  
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
    References

 Article Access Statistics
    Viewed1619    
    Printed17    
    Emailed0    
    PDF Downloaded225    
    Comments [Add]    

Recommend this journal