Table of Contents    
ORIGINAL ARTICLE
Year : 2013  |  Volume : 4  |  Issue : 1  |  Page : 51-56  

Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds


1 Department of Computer Science, Jamia Millia Islamia, New Delhi, India
2 Department of Biotechnology, Beant College of Engineering and Technology, Gurdaspur, India
3 Department of Biotechnology, Post graduate Government College, Chandigarh, Punjab, India
4 Female College of Applied Medical Sciences, Taif University, Al-Taif, Saudi Arabia
5 Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India

Date of Web Publication20-Feb-2013

Correspondence Address:
Md Imtaiyaz Hassan
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0976-9668.107260

Rights and Permissions
   Abstract 

Background: New Delhi metallo-β-lactamase-1 (NDM-1)-producing Gram-negative bacteria are today's major worldwide health concern. The enzyme NDM-1 provides bacterial resistance by its hydrolytic activity against the β-lactam ring of antibiotics. Inhibition of NDM-1 may prevent the hydrolysis of β-lactam ring of the antibiotics, and therefore, plays an important role against antibacterial resistance. Materials and Methods: Here we made an attempt to design suitable inhibitors against NDM-1 from different natural antibacterial compounds using molecular docking approach. Results: We observed that natural compounds such as Nimbolide and Isomargololone are showing an appreciable IC50 value as well as significant binding energy value for NDM-1. We further observed these compounds showing better affinity to NDM-1 on comparison with 14 β-lactam antibiotics. Conclusion: Finally, our study provides a platform for the development of a potent inhibitor of NDM-1, which may be considered as a potential drug candidate against bacterial resistance.

Keywords: New Delhi metallo-beta-lactamase 1, β-lactam antibiotics, energy minimization, ligand, virtual screening


How to cite this article:
Thakur PK, Kumar J, Ray D, Anjum F, Hassan MI. Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds. J Nat Sc Biol Med 2013;4:51-6

How to cite this URL:
Thakur PK, Kumar J, Ray D, Anjum F, Hassan MI. Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds. J Nat Sc Biol Med [serial online] 2013 [cited 2020 Jan 20];4:51-6. Available from: http://www.jnsbm.org/text.asp?2013/4/1/51/107260


   Introduction Top


Antibiotic resistance in bacterial strains has become a major clinical concern. [1] Bacteria have several strategies to combat against β-lactam antibiotics [2],[3] including production of β-lactamases enzyme which hydrolyze the β-lactam ring of lactam antibiotics. [4],[5],[6] The β-lactamases are classified into four groups (1, 2, 3 and 4) on the basis of function. Moreover, based on molecules (nucleotides and amino acid sequences) β-lactamases are classified into four groups (A, B, C and D) comprising two families: Serine-β-lactamases (SBLs) and metallo-β-lactamases (MBLs). [7],[8]

New Delhi metallo-β-lactamase-1 (NDM-1) belongs to the subclass B1 of MBL, in which two zinc ion (s) are required for the activity, where the tightly bound zinc is referred to as Zn1 and the loosely bound zinc is called as Zn2. [9],[10] In Zn1, a tetrahedral geometry is coordinated by three histidine residues and one solvent molecule in the crystal structure. While, a distorted trigonal bipyramidal geometry is the coordination of Zn2 by three amino acids (His, Cys, Asp), a water molecule and a solvent molecule (glycerol) that serves as a ligand to Zn1 too. [11]

The MBL was first identified in a Swedish patient of Indian origin, from New Delhi, who was suffering from urinary tract infection, caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). The multi-drug-resistant bacteria K. pneumoniae containing NDM-1 was named as 'superbug'. [12],[13] NDM-1 is mainly found in K. pneumoniae, but recently NDM-1 activity is also observed in many other bacteria such as Enterobacteriaceae and Acinetobacter baumannii, [14] which causes antibiotic resistance due to its hydrolyzing tendency for β-lactam antibiotics. β-lactam antibiotics resistance was restricted geographically, and restricted to specific bacterial species. However, such species-specific barrier was maintained due to the gene coding for NDM-1 is present as mobile genes on plasmids, therefore, such gene can readily spreaded through bacterial populations. [15]

There is still a lack of clinically potent inhibitors of NDM-1. Hence, it would be a promising choice to block the NDM-1 with suitable inhibitor. To reveal the resistance mechanism of bacteria to β-lactam antibiotics, we selected a series of 35 different natural antibacterial compounds from various literary sources, and successively docked with the active site of NDM-1 [Table 1]. Some of the selected natural compounds show a good binding affinity at the active site of NDM-1, particularly Nimbolide and Isomargololone, produce lower binding energy than the β-lactam antibiotics with NDM-1 and also have appreciable IC50 value. These findings may provide useful insights for designing new potent drugs to fight against the antibiotic resistance of NDM-1.
Table 1: List of natural compounds taken for docking with NDM-1

Click here to view



   Materials and Methods Top


Data set and molecule preparation

In order to find the NDM-1 inhibitors, we selected 35 different antibacterial natural compounds for docking against NDM-1 [Table 1], [Figure 1]a. We further selected β-lactam antibiotics from PubChem (http://pubchem.ncbi.nlm.nih.gov/) and subsequently created a representative set of 14 β-lactam antibiotics, which interact with NDM-1 [Table 2], [Figure 1]b. The molecular structures of antibacterial natural compounds and β-lactam antibiotics were drawn by the Chemdraw, [16] and molecules were converted into protein data bank (pdb) format from MDL Mol by using online MN molecular format convertor (http://www.molecular-networks.com). High-resolution structure of NDM-1 was already reported, and its atomic coordinates were taken from the protein data bank (PDB code: 3Q6X) for docking. [17] Visualization of all docked structure was performed on PyMol molecular graphics program, a comprehensive software package for rendering and animating 3D-structures. [18]
Figure 1: Alignment of all (a) Natural compounds and (b) Antibiotic molecules (stick model) in the lowest-energy confirmation in the NDM-1 structure shown in cartoon model (light grey). Chemical structural representation of (c) Nimbolide and (d) Isomargolonone. Three-dimensional structure of (e) Nimbolide and (f) Isomargolonone are shown in ball and stick model drawn in PyMOL

Click here to view
Table 2: List of antibiotics from the â-lactam family used in docking study

Click here to view


Molecular docking

We used AutoDock 4.2.3 program for docking simulations of ligands shown in [Table 1] and [Table 2] with NDM-1. [19] We applied Lamarckian genetic algorithm (LGA) to analyze protein-ligand interactions. [20] Further, we added polar hydrogen atoms and performed Kollman united atom charge assignment to NDM-1 molecules followed by the generation of PDBQ file. AutoGrid program was used to generate 3D affinity grid fields with grid map of 40 × 50 × 40 points. The default settings were used for all other parameters. AutoDock tools utility was used to generate both grid and docking parameter files (i.e., gpf and dpf).

We performed 50 independent runs with the step sizes of 0.2 Ε for translations and 8° for orientations and torsions for docking of NDM-1 with various ligands. For LGA, pseudo-solids and wets local search methods were used. The possibility of performing local search on an individual in the population was 0.06 and the termination criterion for the local search was 0.01. van der Waals interaction, hydrogen bonding, and the Coulombic electrostatic potential for charges were used for binding energy calculations. Electrostatic grid maps were calculated by distance-dependent dielectric permittivity.

The docking simulations with multiple runs and cluster analysis of ligands were performed with their corresponding docked energy. Docking solutions with ligand all-atom root mean square deviation (rmsd) within 1.0 Ε of each other were clustered together and ranked by the lowest energy. The lowest-energy solution of the lowest ligand all-atom rmsd cluster was accepted as the calculated binding energy. The whole system was minimized to convergence. Although the solvation energies could not be explicitly considered during the minimization, the energy calculations were performed with a distance-dependent dielectric constant of 5 to mimic the solvation effect of the inhibitors in the protein environment. [21]

Energy minimization

Energy minimization of the docked complex of Nimbolide and Isomargolonone with NDM-1 were performed by Ammp molecular dynamics software of VEGA OpenGL package version VEGA ZZ 2.4.0 using the SP4 force-field. [22] Firstly, the correct bond types were assigned to the NDM-1 complex. Moreover, using the default parameters in the VEGA program, force fields and charges were assigned according to AMBER and Gasteiger algorithms, respectively. Then, NDM-1 complex with Nimbolide and Isomargolonone was embedded in a box solvated with 2613 water molecules. To neutralize the system 52 Cl - ions were added and arranged randomly in the system. Thus, the entire system was composed of 12302 atoms in total. Then, the entire system underwent energy minimization relaxation in the two steps procedure without any restraints. First 500 steps of steepest decent method followed by 2000 steps of conjugate gradient minimization method.


   Results Top


The crystal structure of NDM-1 has determined recently. [17] It is evident from the crystal structure analysis that the NDM-1 has an open active site with a unique electrostatic profile, which essentially provides broader substrate specificity. Moreover, the NDM-1 undergoes important conformational changes upon substrate binding. [23] The antibiotic binding domain consists of bivalent zinc metal ion as a cofactor. Zinc ion catalyses the hydrolysis of the lactam ring of the antibiotics and in turn inactivates. We performed the flexible docking of NDM-1 with selected 35 antibacterial natural compounds [Table 1] and [Figure 1]a and 14 β-lactam-containing antibiotics [Table 2] and [Figure 1]b. We have used two parameters, IC 50 and binding energy to screen the best compound out of the 35-compound library.

As evident from [Table 3] and [Table 4] Nimbolide (Molecule 15), Margolone (Molecule 18), Marganone (Molecule 19), Isomargolonone (Molecule 20), Acetyl Aleuritolic acid (Molecule 27) and Harmane (Molecule 33) have lower IC 50 value than the β-lactam antibiotics. We further screened all these molecules on the basis of binding energy, in which only Nimbolide and Isomargolonone qualify, showing significant binding in proximity of the active site [Table 3] [Figure 1]c-f. Since all the selected compounds were natural, we did not perform Lipinski's filter analysis. [24]
Table 3: Binding energy of natural compounds with NDM - 1 calculated using AutoDock - 4.2.3

Click here to view
Table 4: Binding energy of â-lactam antibiotics with NDM - 1 calculated using AutoDock - 4.2.3

Click here to view


We further minimized the energy of both protein-ligand complexes. The energy minimized model of NDM-1-Nimbolide and NDM-1-Isomargolonone complexes showed Rmsd of 0.246 and 0.367 Ε 2 respectively. The result of energy-minimized structure showed a significant number of hydrogen-bonded as well as van der Waals interactions formed between NDM-1 residues and Nimbolide or Isomargolonone [Figure 2]. The protein-ligand complexes are highly stable and complex formation occurs with high affinity.
Figure 2: (a) Ligplot showing residues involved in interactions between NDM-1and Nimbolide (stick model). Interactions between protein and ligands are shown in dotted line. (b) Surface model of the docked NDM-1 with nimbolide where protein molecules are shown as surface (cyan) and nimbolide structure is shown in ball and stick (yellow). (c) Ligplot showing residues involved in interactions between NDM-1 and Isomargolonone (stick model). Interactions between protein and ligands are shown in dotted line. (d) Presence of Isomargolonone in the NDM-1 structure protein molecules are shown as surface (light pink) and Isomargolonone structure is shown in ball and stick (green)

Click here to view


[Figure 2]a and b show the mode of interaction of Nimbolide with the NDM-1 as evident from Ligplot [25] and surface diagram. [Figure 2]a clearly indicates that Nimbolide forms a large number of interactions with NDM-1 residues such as Pro263, Asp124, Gln37, Gly36, Gln38, Asp212, Ile35, Ser251 and Ala252. The Nimbolide was found in close proximity of the Zn1 of active site. Interestingly, interaction of Zn1 has been also observed with His120, His122 and His189 of active site (not shown in Figure). Therefore, the binding of Nimbolide to NDM-1 may affect the coordination of the Zn1 atom which further influences the catalytic activity of the enzyme. All these evidences suggest that Nimbolide may be a potent inhibitor for the NDM-1.

[Figure 2]c and d show the mode of interaction of Isomargololone with the NDM-1. We can observe in [Figure 2]c that Isomargololone forms a large number of interactions with NDM-1 residues such as His122, Asp124, Trp93, Val73, His250, Leu218, Gly219, Lys211, Cys208 and Gln123. Moreover, Isomargololone has shown ionic interaction with the Zn2 [Figure 2]c and affects the coordination of Zn1 with its binding residues. Furthermore, the surface diagram clearly indicates the presence of Isomargololone in the active site cavity of NDM-1 [Figure 2]d. A tight mode of binding observed between Isomargololone and NDM-1 suggests that the activity of the enzyme may be highly affected by this ligand.


   Discussion Top


In order to identify the novel classes of NDM-1 inhibitors by means of structure-based drug design, prediction of protein-ligand interaction is essential for virtual screening approaches. [26] This process requires docking tools to produce suitable conformations of a ligand within a protein-active site. Furthermore, a reliable energy evaluation can easily indicate the quality of a receptor-ligand putative complex and provide insights for biomedical science and drug development. Since the active site of NDM-1 may bind to different classes of the carbapenem family of antibiotics, it can be useful to consider the differences in binding affinity of the selected inhibitors and their natural substrate, that is carbapenem antibiotics. Therefore, we performed the docking analysis of 14 β-lactam antibiotics with NDM-1. We observed that the Piperacillin (antibiotic 3) had lowest binding energy (-6.98 Kcal/mol) and IC 50 (6.45 μM) value as well.

Here our aim is to identify a potent inhibitor to block the lactamase activity of NDM-1. We selected 35 natural compounds from various plant sources and subsequently docked in the active site of NDM-1 . Binding affinity calculation suggests that sorted ligands strongly interact to the NDM-1. A representative set of 14 antibiotics of the β-lactam family was selected from different sub-families like Penicillins (penams), Penems, Carbapenem, Cephalosporins, Monobactams, β-lactamase inhibitors and combinations as shown in [Table 2]. The docking analysis of β-lactam antibiotic with NDM-1 revealed that Piperacillin (Antibiotic 3) antibiotic have lowest binding energy of -6.9 Kcal/mol and IC 50 value (6.45 μM). On the other hand, the docking analysis of the antibacterial natural compounds showed that Nimbolide (1.34 μM), Margolone (5.25 μM), Margolonone (5.34 μM), Isomargolonone (1.25 μM), Acetyl Aleuritolic acid (0.2772 μM) and Harmane (4.32 μM), had IC 50 value lower then β-lactam antibiotics. Interestingly, Isomargololone (-7.49 kcal/mol) and Nimbolide (-8.01 kcal/mol) showed lesser binding energy than the β-lactam antibiotics. Moreover, their IC50 values are quite good to consider as drug molecule [Table 2]. Furthermore, both these compounds are devoid of β-lactam ring therefore, they can easily resist the hydrolase activity of NDM-1. All these results clearly indicate that Isomargololone and Nimbolide, and their derivative compounds may block NDM-1, however, further work is needed to optimize these compounds for specificity, efficacy and experimental validation.


   Conclusions Top


Recent studies showed that NDM-1 plays an essential role in the bacterial resistance to antibiotics. Here we showed that Isomargololone and Nimbolide may be considered as potent and suitable inhibitors for the antibiotic resistance against NDM-1. These compounds showed an appreciable binding affinity in comparison to other natural compounds as well as their substrate antibiotics. All these observations revealed that Isomargololone and Nimbolide and their derivative compounds may block NDM-1 activities and provide a significant basis for drug development for therapeutic intervention in bacterial resistance to antibiotics. However, experimental validations are needed to consider these molecules as a suitable drug against the superbug.


   Acknowledgment Top


MIH is thankful to the Indian Council of Medical Research for financial assistance.

 
   References Top

1.Levy SB, Marshall B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat Med 2004 ;10:S122-9.  Back to cited text no. 1
[PUBMED]    
2.Tipper DJ. Mode of action of beta-lactam antibiotics. Pharmacol Ther 1985;27:1-35.  Back to cited text no. 2
[PUBMED]    
3.Waxman DJ, Strominger JL. Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu Rev Biochem 1983;52:825-69.  Back to cited text no. 3
[PUBMED]    
4.Bush K. New beta-lactamases in gram-negative bacteria: Diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis 2001;32:1085-9.  Back to cited text no. 4
[PUBMED]    
5.Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: Compelling opportunism, compelling opportunity. Chem Rev 2005;105:395-424.  Back to cited text no. 5
[PUBMED]    
6.Jarlier V, Nicolas MH, Fournier G, Philippon A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev Infect Dis 1988;10:867-78.  Back to cited text no. 6
[PUBMED]    
7.Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010;54:969-76.  Back to cited text no. 7
[PUBMED]    
8.Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995;39:1211-33.  Back to cited text no. 8
[PUBMED]    
9.Thomas PW, Zheng M, Wu S, Guo H, Liu D, Xu D, et al. Characterization of Purified New Delhi Metallo-beta-lactamase-1. Biochemistry 2011;50:10102-13.  Back to cited text no. 9
[PUBMED]    
10.Gibb AP, McCallum AK. New Delhi metallo-beta-lactamase 1. Lancet Infect Dis 2010;10:751-2.  Back to cited text no. 10
[PUBMED]    
11.Green VL, Verma A, Owens RJ, Phillips SE, Carr SB. Structure of New Delhi metallo-beta-lactamase 1 (NDM-1). Acta Crystallogr Sect F Struct Biol Cryst Commun 2011;67:1160-4.  Back to cited text no. 11
[PUBMED]    
12.Hammerum AM, Toleman MA, Hansen F, Kristensen B, Lester CH, Walsh TR, et al. Global spread of New Delhi metallo-beta-lactamase 1. Lancet Infect Dis 2010;10:829-30.  Back to cited text no. 12
[PUBMED]    
13.Koh TH, Khoo CT, Wijaya L, Leong HN, Lo YL, Lim LC, et al. Global spread of New Delhi metallo-beta-lactamase 1. Lancet Infect Dis 2010;10:828.  Back to cited text no. 13
[PUBMED]    
14.Chihara S, Okuzumi K, Yamamoto Y, Oikawa S, Hishinuma A. First case of New Delhi metallo-beta-lactamase 1-producing Escherichia coli infection in Japan. Clin Infect Dis 2011;52:153-4.  Back to cited text no. 14
[PUBMED]    
15.Poirel L, Hombrouck-Alet C, Freneaux C, Bernabeu S, Nordmann P. Global spread of New Delhi metallo-beta-lactamase 1. Lancet Infect Dis 2010;10:832.  Back to cited text no. 15
[PUBMED]    
16.Li Z, Wan H, Shi Y, Ouyang P. Personal experience with four kinds of chemical structure drawing software: Review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. J ChemInfComputSci 2004;44:1886-90.  Back to cited text no. 16
    
17.Zhang H, Hao Q. Crystal structure of NDM-1 reveals a common beta-lactam hydrolysis mechanism. FASEB J 2011;25:2574-82.  Back to cited text no. 17
[PUBMED]    
18.Lill MA, Danielson ML. Computer-aided drug design platform using PyMOL. J Comput Aided Mol Des 2011;25:13-9.  Back to cited text no. 18
[PUBMED]    
19.Goodsell DS, Olson AJ. Automated docking of substrates to proteins by simulated annealing. Proteins 1990;8:195-202.  Back to cited text no. 19
[PUBMED]    
20.Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998;19:1639-62.  Back to cited text no. 20
    
21.Mehler EL, Solmajer T. Electrostatic effects in proteins: Comparison of dielectric and charge models. Protein Eng 1991;4:903-10.  Back to cited text no. 21
[PUBMED]    
22.Pedretti A, Villa L, Vistoli G. VEGA: A versatile program to convert, handle and visualize molecular structure on Windows-based PCs. J Mol Graph Model 2002;21:47-9.  Back to cited text no. 22
[PUBMED]    
23.King D, Strynadka N. Crystal structure of New Delhi metallo-beta-lactamase reveals molecular basis for antibiotic resistance. Protein Sci 2011;20:1484-91.  Back to cited text no. 23
[PUBMED]    
24.Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000;44:235-49.  Back to cited text no. 24
[PUBMED]    
25.Laskowski RA, Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J ChemInf Model 2012;51:2778-86.  Back to cited text no. 25
    
26.Tang YT, Marshall GR. Virtual screening for lead discovery. Methods Mol Biol 2011;716:1-22.  Back to cited text no. 26
[PUBMED]    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]


This article has been cited by
1 A Sensitive Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Nimbolide in Mouse Serum: Application to a Preclinical Pharmacokinetics Study
Lingzhi Wang,Do-Dang Phan,Nicholas Syn,Xiaoqiang Xiang,Hongyan Song,Win Thuya,Shili Yang,Andrea Wong,Alan Kumar,Wei Yong,Gautam Sethi,Paul Ho,Boon Goh
Pharmaceutics. 2018; 10(3): 123
[Pubmed] | [DOI]
2 GPU Accelerated Quantum Virtual Screening: Application for the Natural Inhibitors of New Dehli Metalloprotein (NDM-1)
Mingsong Shi,Dingguo Xu,Jun Zeng
Frontiers in Chemistry. 2018; 6
[Pubmed] | [DOI]
3 Ten Years with New Delhi Metallo-ß-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design
Pasquale Linciano,Laura Cendron,Eleonora Gianquinto,Francesca Spyrakis,Donatella Tondi
ACS Infectious Diseases. 2018;
[Pubmed] | [DOI]
4 Identification and evaluation of bioactive natural products as potential inhibitors of human microtubule affinity-regulating kinase 4 (MARK4)
Taj Mohammad,Faez Iqbal Khan,Kevin A. Lobb,Asimul Islam,Faizan Ahmad,Md. Imtaiyaz Hassan
Journal of Biomolecular Structure and Dynamics. 2018; : 1
[Pubmed] | [DOI]
5 Classification and structural analyses of mutational landscapes in hemochromatosis factor E protein: A protein defective in the hereditary hemochromatosis
Mohd. Shahbaaz,Safikur Rahman,Parvez Khan,Jihoe Kim,Md. Imtaiyaz Hassan
Gene Reports. 2017; 6: 93
[Pubmed] | [DOI]
6 Biological evaluation of p-toluene sulphonylhydrazone as carbonic anhydrase IX inhibitors: an approach to fight hypoxia-induced tumors
Aarfa Queen,Parvez Khan,Danish Idrees,Amir Azam,Md. Imtaiyaz Hassan
International Journal of Biological Macromolecules. 2017;
[Pubmed] | [DOI]
7 Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells
Huma Naz,Mohd Tarique,Parvez Khan,Suaib Luqman,Shahzaib Ahamad,Asimul Islam,Faizan Ahmad,Md. Imtaiyaz Hassan
Molecular and Cellular Biochemistry. 2017;
[Pubmed] | [DOI]
8 QSAR based therapeutic management of M. tuberculosis
Shahzaib Ahamad,Safikur Rahman,Faez Iqbal Khan,Neeraja Dwivedi,Sher Ali,Jihoe Kim,Md. Imtaiyaz Hassan
Archives of Pharmacal Research. 2017;
[Pubmed] | [DOI]
9 Functional, structural and epitopic prediction of hypothetical proteins of Mycobacterium tuberculosis H37Rv: An in silico approach for prioritizing the targets
Md. Amran Gazi,Mohammad Golam Kibria,Mustafa Mahfuz,Md. Rezaul Islam,Prakash Ghosh,Md. Nure Alam Afsar,Md. Arif Khan,Tahmeed Ahmed
Gene. 2016;
[Pubmed] | [DOI]
10 Design, synthesis, and biological evaluation of pyrimidine derivatives as potential inhibitors of human calcium/calmodulin-dependent protein kinase IV
Ehtesham Jameel,Huma Naz,Parvez Khan,Mohd. Tarique,Jitendra Kumar,Syed Mumtazuddin,Shahzaib Ahamad,Asimul Islam,Faizan Ahmad,Nasimul Hoda,Md. Imtaiyaz Hassan
Chemical Biology & Drug Design. 2016;
[Pubmed] | [DOI]
11 Calcium/calmodulin-dependent protein kinase IV: A multifunctional enzyme and potential therapeutic target
Huma Naz,Asimul Islam,Faizan Ahmad,Md. Imtaiyaz Hassan
Progress in Biophysics and Molecular Biology. 2016;
[Pubmed] | [DOI]
12 Design and synthesis of a novel class of carbonic anhydrase-IX inhibitor 1-(3-(phenyl/4-fluorophenyl)-7-imino-3H-[1,2,3]triazolo[4,5d]pyrimidin 6(7H)yl)urea
Shikha Kumari,Danish Idrees,Chandra Bhushan Mishra,Amresh Prakash,Amresh Wahiduzzaman,Faizan Ahmad,Md. Imtaiyaz Hassan,Manisha Tiwari
Journal of Molecular Graphics and Modelling. 2016; 64: 101
[Pubmed] | [DOI]
13 Curcumin specifically binds to the human calcium–calmodulin-dependent protein kinase IV: fluorescence and molecular dynamics simulation studies
Nasimul Hoda,Huma Naz,Ehtesham Jameel,Ashutosh Shandilya,Sharmistha Dey,Md. Imtaiyaz Hassan,Faizan Ahmad,B. Jayaram
Journal of Biomolecular Structure and Dynamics. 2016; 34(3): 572
[Pubmed] | [DOI]
14 Towards New Drug Targets? Function Prediction of Putative Proteins ofNeisseria meningitidisMC58 and Their Virulence Characterization
Mohd. Shahbaaz,Krishna Bisetty,Faizan Ahmad,Md. Imtaiyaz Hassan
OMICS: A Journal of Integrative Biology. 2015; 19(7): 416
[Pubmed] | [DOI]
15 Structure-based functional annotation of putative conserved proteins having lyase activity from Haemophilus influenzae
Mohd. Shahbaaz,Faizan Ahmad,Md. Imtaiyaz Hassan
3 Biotech. 2015; 5(3): 317
[Pubmed] | [DOI]
16 PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4
Farha Naz,Mohd. Shahbaaz,Shama Khan,Krishna Bisetty,Asimul Islam,Faizan Ahmad,Md. Imtaiyaz Hassan
Journal of Molecular Graphics and Modelling. 2015; 62: 245
[Pubmed] | [DOI]
17 Classification and Functional Analyses of Putative Conserved Proteins from Chlamydophila pneumoniae CWL029
Shama Khan,Mohd. Shahbaaz,Krishna Bisetty,Faizan Ahmad,Md. Imtaiyaz Hassan
Interdisciplinary Sciences: Computational Life Sciences. 2015;
[Pubmed] | [DOI]
18 Structure-based function analysis of putative conserved proteins with isomerase activity from Haemophilus influenzae
Mohd. Shahbaaz,Faizan Ahmad,Md. Imtaiyaz Hassan
3 Biotech. 2015; 5(5): 741
[Pubmed] | [DOI]
19 In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309
Mohd. Shahbaaz,Krishna Bisetty,Faizan Ahmad,Md. Imtaiyaz Hassan
Computational Biology and Chemistry. 2015; 59: 67
[Pubmed] | [DOI]
20 Spectroscopic and Mechanistic Studies of Heterodimetallic Forms of Metallo-ß-lactamase NDM-1
Hao Yang,Mahesh Aitha,Amy R. Marts,Alyssa Hetrick,Brian Bennett,Michael W. Crowder,David L. Tierney
Journal of the American Chemical Society. 2014; 136(20): 7273
[Pubmed] | [DOI]
21 Structure-based functional annotation of hypothetical proteins from Candida dubliniensis: a quest for potential drug targets
Kundan Kumar,Amresh Prakash,Farah Anjum,Asimul Islam,Faizan Ahmad,Md. Imtaiyaz Hassan
3 Biotech. 2014;
[Pubmed] | [DOI]
22 Resistance to antibiotics targeted to the bacterial cell wall
I. Nikolaidis,S. Favini-Stabile,A. Dessen
Protein Science. 2014; : n/a
[Pubmed] | [DOI]
23 Functional annotation of putative hypothetical proteins from Candida dubliniensis
Kundan Kumar,Amresh Prakash,Munazzah Tasleem,Asimul Islam,Faizan Ahmad,Imtaiyaz Hassan
Gene. 2014;
[Pubmed] | [DOI]
24 Functional Annotation of Conserved Hypothetical Proteins from Haemophilus influenzae Rd KW20
Mohd Shahbaaz,Mohd Md. ImtaiyazHassan,Faizan Ahmad,Eugene A. Permyakov
PLoS ONE. 2013; 8(12): e84263
[Pubmed] | [DOI]
25 Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20
Shahbaaz, M., Hassan, Md.I., Ahmad, F.
PLoS ONE. 2012; 8(12)
[Pubmed]



 

Top
  
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusions
   Acknowledgment
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed5284    
    Printed149    
    Emailed1    
    PDF Downloaded981    
    Comments [Add]    
    Cited by others 25    

Recommend this journal